
B站开源动漫视频生成模型AniSora V3版速度更快、质量更高
应用介绍
作为 Index-AniSora 项目的一部分,V3 版本在原有基础上进一步优化了生成质量、动作流畅度和风格多样性,为动漫、漫画及 VTuber 内容创作者提供了更强大的工具。
AniSora 支持一键生成多种动漫风格的视频镜头,包括番剧片段、国创动画、漫画改编、VTuber 内容、动画 PV、鬼畜(MAD)等。
AniSora V3 基于B站此前开源的 CogVideoX-5B 和 Wan2.1-14B 模型,结合强化学习与人类反馈(RLHF)框架,显著提升了生成视频的视觉质量和动作一致性。其支持一键生成多种风格的动漫视频镜头,包括番剧片段、国创动画、漫画视频改编、VTuber 内容等。
时空掩码模块(Spatiotemporal Mask Module)优化:V3 版本增强了时空控制能力,支持更复杂的动画任务,如精细的角色表情控制、动态镜头移动和局部图像引导生成。例如,提示“五位女孩在镜头放大时起舞,左手上举至头顶再下放至膝盖”能生成流畅的舞蹈动画,镜头与角色动作同步自然。
数据集扩展:V3 继续依托超过 1000 万高质量动漫视频片段(从 100 万原始视频中提取)进行训练,新增数据清洗流水线,确保生成内容的风格一致性和细节丰富度。
硬件优化:V3 新增对华为 Ascend910B NPU 的原生支持,完全基于国产芯片训练,推理速度提升约 20%,生成 4 秒高清视频仅需 2-3 分钟。
多任务学习:V3 强化了多任务处理能力,支持从单帧图像生成视频、关键帧插值到唇部同步等功能,特别适合漫画改编和 VTuber 内容创作。
在最新基准测试中,AniSora V3 在 VBench 和双盲主观测试中,角色一致性和动作流畅度均达到业界顶尖水平(SOTA),尤其在复杂动作 (如违反物理规律的夸张动漫动作) 上表现突出。
V3 还引入了首个针对动漫视频生成的 RLHF 框架,通过 AnimeReward 和 GAPO 等工具对模型进行微调,确保输出更符合人类审美和动漫风格需求。社区开发者已开始基于 V3 开发定制化插件,例如增强特定动漫风格(如吉卜力风)的生成效果。
AniSora V3 支持多种动漫风格,包括日本动漫、国产原创动画、漫画改编、VTuber 内容及恶搞动画(鬼畜动画),覆盖 90% 的动漫视频应用场景。具体应用包括:
单图转视频:用户上传一张高质量动漫图像,配合文本提示(如“角色在向前行驶的车中挥手,头发随风摆动”),即可生成动态视频,保持角色细节和风格一致。
AIbase 测试显示,V3 在生成复杂场景(如多角色交互、动态背景)时,相比 V2 减少了约 15% 的伪影问题,生成时间缩短至平均 2.5 分钟(IT之家注:4 秒视频)。